
Repairing Programs with Semantic Code Search

Yalin Ke Kathryn T. Stolee
Department of Computer Science

Iowa State University
{yke, kstolee}@iastate.edu

Claire Le Goues
School of Computer Science
Carnegie Mellon University

clegoues@cs.cmu.edu

Yuriy Brun
College of Information and Computer Science

University of Massachusetts, Amherst
brun@cs.umass.edu

Abstract—Automated program repair can potentially reduce

debugging costs and improve software quality but recent studies

have drawn attention to shortcomings in the quality of automati-

cally generated repairs. We propose a new kind of repair that uses

the large body of existing open-source code to find potential fixes.

The key challenges lie in efficiently finding code semantically

similar (but not identical) to defective code and then appropri-

ately integrating that code into a buggy program. We present

SearchRepair, a repair technique that addresses these challenges

by (1) encoding a large database of human-written code fragments

as SMT constraints on input-output behavior, (2) localizing a

given defect to likely buggy program fragments and deriving the

desired input-output behavior for code to replace those fragments,

(3) using state-of-the-art constraint solvers to search the database

for fragments that satisfy that desired behavior and replacing the

likely buggy code with these potential patches, and (4) validating

that the patches repair the bug against program test suites. We

find that SearchRepair repairs 150 (19%) of 778 benchmark C

defects written by novice students, 20 of which are not repaired

by GenProg, TrpAutoRepair, and AE. We compare the quality of

the patches generated by the four techniques by measuring how

many independent, not-used-during-repair tests they pass, and

find that SearchRepair-repaired programs pass 97.3% of the tests,

on average, whereas GenProg-, TrpAutoRepair-, and AE-repaired

programs pass 68.7%, 72.1%, and 64.2% of the tests, respectively.

We conclude that SearchRepair produces higher-quality repairs

than GenProg, TrpAutoRepair, and AE, and repairs some defects

those tools cannot.

I. INTRODUCTION
Buggy software costs the global economy billions of dollars

annually [8], [60]. One major reason software defects are so
expensive is that software companies must dedicate considerable
developer time [75] to manually finding and fixing bugs in
their software. Unfortunately, manual bug repair, the industry
standard, is largely unable to keep up with the volume of defects
in extant software [2]. Despite their established detrimental
impact on a company’s bottom line, known defects ship in
mature software projects [45], and many defects, including
those that are security-critical, remain unaddressed for long
periods of time [32].

At the same time, the expansion of the open-source
movement has led to many large, publicly accessible source
code databases, such as GitHub, BitBucket, and SourceForge.
Because many programs include routines, data structures, and
designs that have been previously implemented in other software
projects [11], [12], [24], we posit that, if a method or component
of a software system contains a defect, with high probability,
there exists a similar but correct version of that component
in some publicly accessible software project. The research
challenge lies in how to automatically find and use such
implementations to repair bugs.

Our key idea is to use semantic code search [68] over

existing open-source code to find correct implementations
of buggy components and methods, and use the results to
automatically generate patches for software defects. Semantic
search identifies code by what it does, rather than by syn-
tactic keywords. We develop SearchRepair, a new technique
predicated on our idea. SearchRepair:

1) Encodes a large database of human-written code fragments
as satisfiability modulo theories (SMT) constraints on their
input-output behavior.

2) Localizes a defect to likely buggy program fragments.
3) Constructs, for each fragment, a lightweight input-output

profile that characterizes desired functional behavior as
SMT constraints.

4) Searches the database, using state-of-the-art constraint
solvers, for fragments that satisfy such a profile. These
fragments become potential patches when contextualized
and inserted into the buggy regions, replacing the original
potentially faulty code.

5) Validates each potential patch against the program test
suite to determine if it indeed repairs the defect in question.

To make SearchRepair possible, we first extend our previous
work in semantic code search [68] to C program fragments.
Second, we adapt spectrum-based fault localization [36] to
identify candidate regions of faulty code and construct input-
output profiles to use as input to semantic search. Third, we
build the infrastructure to perform semantic code search over the
SMT-encoded code database, adapt the returned code fragment
to the defective context via variable renaming, and validate
against provided test suites.

Our goal with SearchRepair is to produce high quality
patches while still addressing a broad range of defects. A
key feature of a high quality patch, whether human- or tool-
generated, is that it generalizes to the full, desired, often
unwritten specification of correct program behavior. This is a
challenge for automatic repair techniques (e.g., [3], [7], [10],
[11], [15], [16], [18], [19], [21], [28], [33], [35], [39], [42],
[48], [49], [50], [51], [52], [54], [56], [57], [61], [69], [70], [73],
[74], [76]), many of which use test suites to guide and evaluate
patching efforts. Modern test-suite guided repair techniques,
particularly those following a generate-and-validate paradigm
(i.e., heuristically constructing and then testing large numbers of
candidate repairs), although typically general and scalable, often
produce poor-quality patches that overfit to the specification
test suites used to guide patch generation [20], [57], [65].

By definition, test suites only encode a partial specification
of correct behavior. A patch that is correct according to a given
test suite may therefore not be fully correct when evaluated with
respect to a hypothetical full correctness specification. This is
analogous to the well-known machine learning phenomenon
of overfitting to an objective function, where the program

mailto:yke@iastate.edu,kstolee@iastate.edu,clegoues@cs.cmu.edu,brun@cs.umass.edu
mailto:yke@iastate.edu,kstolee@iastate.edu,clegoues@cs.cmu.edu,brun@cs.umass.edu
mailto:yke@iastate.edu,kstolee@iastate.edu,clegoues@cs.cmu.edu,brun@cs.umass.edu

repair objective is defined as satisfying a given partial correct
specification (test suite). Since there are infinitely many
programs that satisfy any given partial specification, and a repair
technique can produce any one of them, there is reasonably high
probability that a resulting repaired program will not adhere
to the unwritten, full, desired specification, absent additional
efforts to ensure quality control.

To that end, there are two primary ways that SearchRepair
differs from previous repair approaches. First, because it
uses test cases to guide a semantic search for candidate
fix code, it bridges the gap between correct-by-construction
techniques [35], [49], [50], [52], [70] predicated on program
synthesis and generate-and-validate techniques that heuristi-
cally create and then test large numbers of candidate repairs [1],
[11], [12], [15], [18], [39], [47], [54], [57], [63], [69], [73],
[74]. Second, although several previous techniques also reuse
human-written code from elsewhere in a program, or instantiate
human-written templates to effect local changes, SearchRepair
identifies larger sections of human-written candidate fix code
from other projects, which it uses to replace defective regions
wholesale. Because code is repetitive and often reimplements
routines [5], [11], [12], [24], it may be possible to find correct
alternative versions of a given buggy piece of functionality in
other software systems, given a sufficiently large database.

Our core assumption is that a larger block of human-
written code, such as a method body, that fits a given partial
specification is more likely to satisfy the unwritten specification
than a randomly chosen set of smaller edits generated with
respect to the same partial specification. Human developers
typically possess a notion of desired full correctness that is
not necessarily completely captured by a partial test suite, but
encoded nonetheless in the resulting functionality. Reusing
human-written code at this higher level of granularity is thus
more likely to result in patches that capture the underlying
human intuition than are smaller edits. Consider an example of
a program that has a bug in a subroutine that sorts an array of
integers. No finite set of tests can uniquely define sorting the
array. Using a test suite, automated program repair is as likely
to produce a sorting routine as it is to produce a different routine
that works for the example tests but fails on other, unwritten
tests. However, in a large body of human-written code, there
are many more sorting routines than other routines that satisfy
such tests, so searching for such a human-written routine is
more likely to generalize to the unwritten specification.

Our evaluation shows that at least in the context of our
experiments, this core assumption holds. Simultaneously, while
SearchRepair repairs a similar fraction of defects to Gen-
Prog [42], [74], TrpAutoRepair [56], and AE [73], SearchRepair
can address some defects that none of the other techniques
patch. This suggests that SearchRepair is complementary to
prior work, able to tackle defects that were previously not
amenable to repair via state-of-the-art generate-and-validate
techniques.

We evaluate SearchRepair on a benchmark of 778 C
defects written by novice students [43]. This benchmark was
specifically designed to evaluate program repair techniques,
and among other features, each defect in this benchmark has
two independent test suites, allowing us to repair the defect
with SearchRepair, GenProg, TrpAutoRepair, and AE using
one test suite, and then evaluate the quality of the repair on
the independent test suite [65]. We find that the quality of
SearchRepair’s repairs is much higher on average than that

of the other techniques. SearchRepair-repaired programs pass
97.3% of the held-out tests, on average, whereas GenProg-,
TrpAutoRepair-, and AE-repaired programs pass 68.7%, 72.1%,
and 64.2% of the held-out tests, respectively.
This paper’s main contributions are:
• An extension of state-of-the-art semantic code search to new

primitives and functions, and an implementation for the C
programming language.

• SearchRepair, a semantic-code-search-based automated pro-
gram repair approach and its implementation, including an
extension of spectrum-based fault localization for use in
identifying candidate fragments of defective code:
https://github.com/ProgramRepair/SearchRepair/.

• An evaluation on 778 defects showing that SearchRepair
can repair 150 (19.3%) of them. Of the 310 defects
that SearchRepair, GenProg, TrpAutoRepair, or AE repairs,
20 (6.5%) are only repaired by SearchRepair. We also
demonstrate that SearchRepair produces significantly higher
quality repairs, on average, as compared to the other tools.

The remainder of this paper is structured as follows.
Section II provides relevant background on the state-of-the-art
in semantic code search, automatic defect repair, and measuring
patch quality. Section III details the SearchRepair approach.
Section IV evaluates SearchRepair and compares it with three
other repair techniques. Section V places our work in the
context of related research. Finally, Section VI summarizes
our contributions.

II. BACKGROUND
We begin by introducing background concepts in semantic

code search in Section II-A, automated program repair in
Section II-B, and limitations of current repair techniques,
focusing on output quality, in Section II-C.

A. Semantic code search
In this paper, we extend our prior work on input-output

example-based semantic code search [66], [67], [68]. We detail
our extensions and illustrate with examples in Section III and
focus in this subsection on a high-level overview to ground the
subsequent material.

Code search uses a specification to identify code in a
repository that matches that specification. Syntactic code search
uses syntactic features such as keywords and variable names
as the specification. For example, a developer trying to find
a method for string replacement in C might search for “C
string replace”. By contrast, semantic search uses behavioral
properties as the specification. For example, the developer
could supply several input-output pairs for the desired string
replacement function, demonstrating by example the desire for
code that performs replacement. Semantic code search offers
the notable advantage over keyword-based search because a
developer can search by example, and need not guess the words
that describe the behavior.

All search involves indexing and searching. Indexing
constructs the database of information over which the search
will be performed. Searching uses a user- or tool-supplied
query to identify potential results, often ranked by predicted
relevance, from the indexed database. Our approach to semantic
code search (1) indexes code fragments by converting them
to symbolic constraints describing their input-output behavior,
and (2) converts input-output example queries into additional
constraints describing desired behavior and uses off-the-shelf

https://github.com/ProgramRepair/SearchRepair/

SMT solvers to identify indexed fragments that satisfy the
desired behavior constraints:
Indexing source code as SMT constraints. The indexing
step happens offline and produces a database relating code
fragments to be searched to sets of SMT constraints over the
input-output behavior and the segment’s type signature. For
each fragment, symbolic execution [13], [14], [40] enumerates
the feasible paths through it and our approach converts code
constructs and predicates controlling each path’s execution
into SMT constraints describing variable types and values.
The fragment’s SMT encoding is the disjunction of the paths’
constraints. Section III-B describes this encoding process in
more detail.
Searching with an input-output specification. To find code
in the database that matches desired behavior expressed as input-
output pairs, our approach converts the input-output pairs into
SMT constraints over the inputs and outputs. For each fragment
in the database that satisfies the required type signature, the
approach conjoins the fragment’s constraint set with those
describing desired behavior and invokes an SMT solver to
determine if the overall set of constraints is satisfiable (subject to
a mapping constraint between the variables in the input-output
pair to those in the fragment). If the overall set is satisfiable,
the constraints describing the code fragment satisfy the partial
behavioral specification imposed by the input-output pairs, and
the fragment is returned as a potential match. Section III-E
describes this search process in more detail.

B. Automatic program repair
The high costs of defective software motivates research

in automatically and generically repairing bugs. The input
to any such technique is typically a program with a defect
and a mechanism to validate correct and incorrect behavior
in that program. One class of such techniques is correct-
by-construction repair. These techniques rely on inferred or
provided specifications to guide sound patch synthesis [19],
[35], [49], [50], [70], [71]. The other primary class of repair
approaches is generate-and-validate repair, which uses search-
based software engineering techniques [31], [57], [69] or
predefined repair templates [15], [39], [54] to generate many
candidate patches for a bug, and then validate them using
indicative workloads or test suites.

In this work, we compare SearchRepair to three prior
generate-and-validate techniques: GenProg [42], [44], [72],
[74], TrpAutoRepair [56], and AE [73]. (TrpAutoRepair was
also published under the name RSRepair in “The strength of
random search on automated program repair” by Yuhua Qi,
Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang
in the 2014 International Conference on Software Engineering;
we refer to the original name in this paper.) All three of
these techniques are publicly available and open-source, all
target C programs, and all are general in the types of defects
they repair. Generate-and-validate techniques differ in (1) how
they choose which program locations to modify, (2) which
modifications they permit, and (3) how they validate candidate
patches. These differences encapsulate the three key hurdles
that such techniques must overcome to find patches [73].
First, such a technique must localize the defect to a set
of candidate program locations to be potentially changed.
Previous techniques, including the three to which we compare
in this work, typically use or adapt prior fault localization
work [36], [59] to identify promising locations. Second, such a

technique must modify the code in an attempt to repair it. This
describes the fix space of a particular program repair problem.
GenProg, TrpAutoRepair, and AE address this challenge using
the observation that programs are often internally repetitive [5],
[25] and limit changes to deleting constructs and copying
constructs from elsewhere in the same program. TrpAutoRepair
and AE restrict attention to single-edit patches. Third, such a
technique validates candidate patches and uses the results of
that validation to dictate how the space of candidate patches
will be traversed. GenProg, TrpAutoRepair, and AE, and most
prior techniques, evaluate patches using test cases.

GenProg uses the test results to define an objective function
that informs an evolutionary search [22], [41] over the space of
candidate patches. TrpAutoRepair samples candidate patches
randomly, and gains efficiency by prioritizing the test case
execution order, and only runs as many test cases as necessary
to find one that fails. AE is deterministic and uses heuristic
computation of program equivalence to prune the space of
possible repairs, selectively choosing which tests to use to
validate intermediate patch candidates. AE uses the same
change operators as GenProg and TrpAutoRepair, but rather
than using a genetic or randomized search algorithm, AE
exhaustively searches through the space of all non-equivalent
k-distance edits (with published evaluations using k = 1).

C. Measuring patch quality
Generate-and-validate repair has been shown to scale to

bugs in large systems, with human-competitive costs [19],
[35], [39], [42], [50], [54], [70]. However, such techniques
provide no correctness guarantees besides validation against the
provided workloads or tests and tend to generate short patches.
It may therefore be difficult for them to repair complex defects.
Importantly, such techniques may produce lower quality patches
than those written by humans [23], [39], and recent studies have
identified significant concerns with the functional correctness
of automatically-repaired programs [20], [57], [65].

One way to measure the quality of a repair is to obtain a
separate, independent test suite that the repair technique cannot
access when generating the repair. This test suite offers a
second, independent partial specification. Repairs that adhere
to the unwritten, full specification will satisfy both the test
suites. Meanwhile, repairs that overfit to the test suite used
during repair generation may not satisfy the independent test
suite. Thus, such a second test suite can be used to estimate
repair quality.

In this work, we use a benchmark of 778 defects, each
with two such independent test suites, specifically designed
for evaluating automated repair [43]. Prior experiments with
GenProg, TrpAutoRepair, and AE on this benchmark have
shown that, on this dataset, these tools produce repairs that
pass only 68.7%, 72.1%, and 64.2%, respectively, of the tests in
the independent test suite not used during patch generation [65].

The rest of this paper describes the technique that makes
repair via searching for human-written code possible and tests
our hypotheses that such human-written code can be used to
repair defects, and that the quality of the repairs is higher.
Section IV will show that this approach does repair defects,
that it repairs some defects that prior techniques cannot repair,
and that the resulting repairs pass, on average, 97.3% of the
independent tests not used during repair generation.

1 int main() {
2 int a, b, c, median = 0;
3 printf("Please enter 3 numbers separated by spaces >");
4 scanf("%d%d%d", &a, &b, &c);
5 if ((a<=b && a>=c) || (a>=b && a<=c))
6 median = a;
7 else if ((b<=a && b>=c) || (b>=a && b<=c))
8 median = b;
9 else if ((c<=b && a>=c) || (c>=b && a<=c))

10 median = c;
11 printf("%d is the median", median);
12 return 0;
13 }

Fig. 1: A student-written, buggy program to print the median
of three integers. Note that the comparison between variables a

and c on line 9 are flipped, such that c will never be identified
as the median.

input expected program test
output output result

t1 9 9 9 "9 is the median" "9 is the median" pass
t2 0 2 3 "2 is the median" "2 is the median" pass
t3 0 1 0 "0 is the median" "0 is the median" pass
t4 0 2 1 "1 is the median" "0 is the median" fail
t5 8 2 6 "6 is the median" "0 is the median" fail

Fig. 2: Five test cases for the program from Figure 1.

III. SEARCHREPAIR

We propose SearchRepair, a tool for automated program
repair using semantic code search. SearchRepair uses fault
localization to identify buggy fragments of code. For each
identified candidate buggy fragment, SearchRepair extracts
program state in the form of dynamic variable values over the
test cases. The program state before and after each fragment on
a single test case forms one input-output example. The values
for passing test cases form positive input-output examples; the
values for failing test cases form negative input-output examples
whose corresponding behavior a repaired program should avoid.
The full set of these input-output examples is called a profile.
SearchRepair uses these profiles to search a database of code
to find code fragments that can serve as potential patches,
replacing the buggy fragments. Once a potential patch is found,
SearchRepair renames the variables to fit the context, replaces
the buggy code with the patch, and runs all tests. If all tests
pass, SearchRepair accepts the patch; otherwise, SearchRepair
moves on to another patch. This process continues until a patch
is found or all matches from the semantic search are exhausted.

SearchRepair extends our prior work on input-output
example-based semantic code search [67], [68], which targeted
Java and encoded fewer primitives and functions than SearchRe-
pair. SearchRepair targets C code, supports all primitives and
mathematical functions from the Java implementation, and
additionally encodes char* variables, the modulo operator, and
the string library functions isdigit, islower, isupper, strcmp,
and strncmp.

In this section, we describe SearchRepair in detail, starting
with an illustrative example.

(a) fully correct code fragment:
1 if((x <= y && x >= z) || (x >= y && x <=z))
2 m = x;
3 else if((y <= x && y >= z) || (y >= x && y <= z))
4 m = y;
5 else
6 m = z;

(b) partially correct code fragment:
1 if ((a <= b && a >= c) || (a >= b && a <= c))
2 median = a;
3 else if ((b <= a && b >= c) || (b >= a && b <= c))
4 median = b;
5 else if ((c <= b && a <= c) || (c >= b && a <= c))
6 median = c;

Fig. 3: Two candidate code fragments to be used to replace
lines 5–10 in Figure 1. Code fragment (a) repairs the bug,
passing all five tests; meanwhile, (b) only partially repairs the
bug, as tests t1, t2, t3, and t5 pass, but test t4 still fails.

A. Illustrative example
We use a short program (Figure 1) and a test suite (Figure 2)

to illustrate the concepts underlying SearchRepair.
Prior to initiating any particular repair effort, SearchRepair

constructs a database of candidate repair code fragments over
which the semantic search for repairs will be conducted. These
fragments can come from code in open-source repositories,
large in-house code bases, or any other source of code fragments.
As Section III-B describes, indexing will create a database
relating the code fragments to their type signatures and sets of
constraints on their input-output behavior. For introducing the
example program, we will assume this database already exists.

Consider the code in Figure 1, adapted from one of
the student programming assignments we use to evaluate
SearchRepair in Section IV. The main function takes three
integers from the user, and identifies and prints their median.
This code is partially incorrect, as the test suite in Figure 2
exposes. Of the five test cases t1–t5 in Figure 2, t4 and t5 fail
on this code. This is because when c is the median and a 6= c,
the code always outputs zero (the default value of median),
rather than the value of c, because the if predicate on line 9
is incorrect.

SearchRepair uses tests and dynamic fault localization
to identify likely buggy regions. Assume fault localization
correctly identifies line 9 in Figure 1 as potentially buggy.
SearchRepair attempts to replace the entire block of control
flow (the full if-then-else block in lines 5–10), as Section III-C
explains in detail.

Next, SearchRepair observes the test case executions around
this code fragment to construct input and output states in
terms of the observed runtime values of the local variables
(Section III-D). The passing test cases characterize correct
behavior: Executing t1, the input program state (state before
line 5) is {a = 9, b = 9, c = 9, median = 0}. The output program
state (state after line 10) is {a = 9, b = 9, c = 9, median = 9}.
Similarly, the failing test cases characterize behavior to be
avoided: Executing t4, the input and output program states
are both {a = 0, b = 2, c = 1, median = 0. The overall input-
output profile, generated from the five test cases, consists one
input-output state pair per test case, annotated with whether
the behavior is correct. Figure 4 shows a full profile for the
example.

test input input state output state test result

t1 9 9 9 a:9:int b:9:int c:9:int median:0:int a:9:int b:9:int c:9:int median:9:int pass
t2 0 2 3 a:0:int b:2:int c:3:int median:0:int a:0:int b:2:int c:3:int median:2:int pass
t3 0 1 0 a:0:int b:1:int c:0:int median:0:int a:0:int b:1:int c:0:int median:0:int pass
t4 2 0 1 a:0:int b:2:int c:1:int median:0:int a:0:int b:2:int c:1:int median:0:int fail
t5 2 8 6 a:2:int b:8:int c:6:int median:0:int a:2:int b:8:int c:6:int median:0:int fail

Fig. 4: An input-output profile for the program from Figure 1, constructed using the test suite from Figure 2.

A profile, such as the one in Figure 4, serves as input to
the semantic search engine described in Section III-E, which
searches the database of code fragments constructed by the
indexing step. SearchRepair considers each code fragment the
search finds as a potential patch (subject to variable renaming),
integrates it into the program, and runs the test suites to check
if it repairs the defect (Section III-F). For example, the code
fragment in Figure 3(a) can be used to construct a repair for
lines 5–10 in the program in Figure 1 such that it passes all
the test cases in Figure 2. Note, however, that the variable
names Figure 3(a) do not match those used in the original
program. SearchRepair modifies such fragments by mapping the
variables in the original code context to those in the candidate fix
fragment. For this example, one of the several valid mappings
is x 7! a, y 7! c, z 7! b, and m 7! median. The resulting modified
program passes all test cases, as desired.

B. Indexing for semantic code search
As Section II-A summarized, SearchRepair indexes a set

of code fragments to create a searchable database. This
section illustrates indexing with an example code fragment
from Figure 3(a). Indexing consist of:
Collecting candidate source code fragments. SearchRepair
collects entire blocks of statements surrounded by predicates
(e.g., for statements inside if-then-else conditions, SearchRe-
pair captures the entire if-then-else block), and sequences of 1
to 5 statements of code. This captures our intuition that higher-
granularity patches are more likely to lead to higher-quality
patches than lower-granularity patches, while still enabling
sufficiently expressive repair of defects. SearchRepair does not
include in its indexed database code fragments with loops, but
SearchRepair can repair code constructs that contain loops, as
Section III-C further explains. We leave encoding fragments
with loops to future work.
Statically enumerating execution paths in each fragment.

SearchRepair translates all fragments into static single assign-
ment (SSA) format and then uses symbolic execution [13], [14],
[40] to enumerate statically feasible intra-procedural program
paths. These paths consist of variable declarations that contain
the names and types of the variables used in the fragment, as-
sumptions (path conditions) that represent predicates controlling
path execution (e.g., the expression controlling a conditional
branch execution), and statements that capture relevant code
constructs along a path, such as assignments and function
calls. Figure 5 shows the four local variables (vars) and three
paths (p1, p2, and p3) for the C fragment from Figure 3(a).
For multi-path fragments, each feasible path is translated into
a separate set of constraints (described next) and the whole
fragment encoding is a disjunction of the constraints of all the
paths.

vars: LOCAL(int x, int y, int z, int m)

p1: ASSUME[(x <= y && x >= z)|| (x >= y && x <=z)]

STMT[m = x]

p2: ASSUME[not((x <= y && x >= z)|| (x >= y && x <=z))

&& ((y <= x && y >= z)|| (y >= x && y <= z))]

STMT[m = y]

p3: ASSUME[not((x <= y && x >= z)|| (x >= y && x <=z))

&& not((y <= x && y >= z)|| (y >= x && y <= z))]

STMT[m = z]

Fig. 5: The local variables and the three paths that describe
the potential behavior of the C code fragment in Figure 3(a).

Translating paths into SMT constraints over variables and

control flow. There are two types of constraints representing a
fragment’s behavior: those concerning variable declaration and
types (LOCAL in Figure 5), and those concerning variable values
(ASSUME and STMT in Figure 5). Variable types are constrained
to their statically declared types in the program fragment. For
example, the vars in Figure 5 are associated with the following
environment constraint describing in-scope variables:

9x,y,z,m : int (g)

Constraints on variable values are translated from the predicates
that control path execution and explicit statements along
the statically-enumerated path. For example, p1’s execution
assumes the predicate in the first if statement, constraining the
implicated variables accordingly; p2 assumes that the first if

predicate evaluates to false (is negated) but the second (in the
else if on line 3 of Figure 3(a)) is true; etc. These predicates
are captured in the ASSUME statements from Figure 5. Any
remaining statements in a path capture variable manipulation.
Overall, for the fragment from Figure 3(a):

(m = x) ^ ((z x y)_ (y x z)) (f1)

(m = y) ^ (¬((z x y)_ (y x z)) ^
((z y x)_ (x y z))) (f2)

(m = z) ^ (¬((z x y)_ (y x z)) ^
¬((z y x)_ (x y z))) (f3)

Each path is thus encoded as a conjunction of the variable
value and type constraints, and the entire fragment is encoded
as a disjunction of all n paths in the fragment:

n_

1
g^fn

SearchRepair ultimately translates all constraints into a
format suitable for the Z3 SMT solver and stores them in a
database. SearchRepair could instead use other SMT solvers
with nonlinear integer arithmetic with uninterpreted function
symbols (UFNIA) theory. Integers and booleans are built-in
types for this SMT theory; strings and characters are not. We
treat characters as integers, translating into associated integer
values when known, and encode strings via constraints on
string length and location and value of each individual character.
Our translation has special handling for common arithmetic
operators and functions, and for string library functions in C;
these translations are novel with respect to our previous work
on semantic search for Java fragments [68].

SearchRepair stores each translated code fragment in a
relational database relating path constraints, original source
code, and type signature of the fragment.

C. Fault localization
We adapt the Tarantula fault localization technique [36] to

identify code fragments that SearchRepair attempts to replace
with patch code. Tarantula is a well-known and foundational
example of a class of techniques that implement spectrum-
based fault localization. Tarantula uses coverage information
provided by a set of passing and failing test cases to compute
suspiciousness scores that characterize the likelihood that a
given statement of code is responsible for a failing test case.
Given a program and a test suite, Tarantula executes each test
in the suite and records each statement the test executes, and
if the test passes or fails. It uses the number of passing and
failing test cases on each executed statement s to compute a
suspiciousness score:

suspiciousness(s)=

s✓
failed(s)

total failed

◆✓
failed(s)

failed(s)+passed(s)

◆

where total failed denotes the total number of failed test
cases, and failed(s) and passed(s) denote, respectively, the
number of failing and passing test cases that execute s. A
high suspiciousness(s) value suggests that s is more likely to
be buggy. Prior work has varied in the weighting of the two
factors in the formula; SearchRepair weights them equally.

Given the buggy program and the passing and failing test
cases, SearchRepair computes the Tarantula suspiciousness
score for fragments in the following way:
1) Compute initial suspiciousness. SearchRepair uses the

test suite to compute the suspiciousness score for each
statement in the program. For the example in Figure 1, this
initial computation assigns the maximal score of 1 to the
if condition on line 9, because it is only executed by the
failing test cases. The preceding predicate (line 7) in the
if-else sequence has the score of 0.71; it is executed by
the failing test cases and some of the passing test cases.
Lines 2–5 and 11–12 are executed by all tests, and have
the score of 0.63. Lines not executed by any failing tests
(lines 6, 8, and 10) receive a score of 0.

2) Identify the most suspicious statement(s). SearchRepair
identifies the line with the highest suspiciousness score
and denotes it pivot. In our example, this is line 9.
If multiple statements share the highest suspiciousness,
SearchRepair designates multiple pivots and identifies
suspicious fragments for each, treating each independently.

3) Select fragments for replacement. If pivot corresponds
to a guarded statement, such as the predicate that controls

a block or loop, SearchRepair will attempt to replace
the entire guarded block as well as the preceding related
control flow (in the case of multiple else-if constructs). In
Figure 1, the pivot statement at line 9 identifies a candidate
replacement fragment corresponding to the statements on
lines 5–10.
If the pivot does not identify such a predicate, SearchRepair
will attempt to replace a set of fragments around the pivot.
The size of the set is defined by a window size. For
example, in our experiments in Section IV, we heuristically
set the window size to no more than five lines, meaning
that SearchRepair attempted to replace up to five different
fragments: the pivot, the pivot with the following line, the
pivot with the following two lines, and so on, until the
window size of five. For cases in which the enclosing C
code block was smaller than the window size, SearchRepair
did not go beyond the code block size.
There to-be-replaceD fragments preserve the granularity of
the fragments encoded in the indexed repository, resulting
in higher-granularity repairs than produced by prior repair
techniques. We hypothesize this increase in granularity
leads to higher-quality patches.
Our experimental results in Section IV show that this ap-

proach can often sufficiently accurately locate buggy fragments
for the defects in our dataset.

D. Obtaining input-output profiles
The fault localization described in Section III-C identifies

candidate code fragments as sites for repair. For each such
identified code fragment, the next step is to extract variables and
their values dynamically from the source code and its execution
on the test cases. The goal is to collect, for each local variable,
its name, type, and value both before and after the execution
of the buggy code fragment. We leave consideration of global
variables for future work. In the program from Figure 1, this
requires identifying the values of a, b, c, and median before
line 5 (input state) and after line 10 (output state). SearchRepair
uses an unoptimized logging procedure to acquire these values
in our experiments.

Figure 4 shows the profile for our example program from
Figure 1 as executed on the test suite from Figure 2. Since
the test cases t1, t2, and t3 pass on the buggy program, the
associated profile has three positive examples, one per test. The
other test cases, t4 and t5, fail, so the associated input-output
examples are negative.

E. Semantic search with an input-output profile
For each candidate buggy code fragment, SearchRepair uses

the associated input-output profile to search the indexed repos-
itory of code fragments (recall Section III-B) for replacement
fragments. The profiles characterize the desired behavior of
the fragment; at a high level, the semantic search identifies
functionally similar code, ideally without the defect in question.
To find code that matches a specified profile, SearchRepair
encodes each input-output example in the profile as SMT
constraints and then uses the Z3 SMT solver [17] to find
fragments in the database that satisfy them.

The first step in searching with an input-output profile is
thus to transform input-output information into SMT constraints.
Similar to the encoding used to construct the database of
candidate replacement fragments (Section III-B), an input-
output profile is described by constraints over the types and
values of implicated variables.

To illustrate, consider a single input-output example that
could describe code that computes the median of three numbers:
{int i = 2, int j = 3, int k = 4} (input) and {int med = 3}
(output). Such an input-output query can be translated into
constraints as:

(9i, j,k,med : int)^
(i = 2)^ (j = 3)^ (k = 4)^ (med = 3) (Qio)

Because we cannot assume consistent variable names, for
each considered candidate database fragment, SearchRepair
includes constraints encoding all possible mappings between
the inputs and outputs of the profile and the candidate. Consider
the example in Figure 5, whose input variables are x, y, and z. In
some instances, including in this example, we can preemptively
identify the fragment’s output variable, if it is assigned last
on every path (m, in this example; were this not the case, the
number of possible mappings, and thus the mapping constraint,
would be larger). The mapping constraints between the example
input-output pair and this candidate fragment is:
(med=m)̂
(((i=x)^(j=y)^(k=z))_ ((i=x)^(j=z)^(k=y))_
((i=y)^(j=x)^(k=z))_ ((i=y)^(j=z)^(k=x))_
((i=z)^(j=x)^(k=y))_ ((i=z)^(j=y)^(k=x)))

(Mio)

Thus, for each input-output pair io, and for each path n, in
the fragment, the query to the SMT solver is:

g^fn ^Qio ^Mio (search)

If at least one these queries is satisfiable for a particular
fragment, the associated path n satisfies the constraints imposed
by the input-output pair in question. Only one path per input-
output pair needs to be satisfiable for the entire fragment to be
considered a candidate patch.1 When the query is satisfiable,
the SMT solver produces a satisfiable model, which provides a
suitable binding between input-output and fragment variables
consistent with the constraint Mio.

Extending this procedure to the multiple examples included
in the profile of a candidate buggy region requires the separate
encoding of each input-output pair. We define a code fragment
as a match, or potential patch for a candidate faulty code region,
if for each input state and output state pair corresponding to
passing test cases, at least one path satisfies the specification
(Section III-F describes other types of matches, such as partial
matches). SearchRepair currently queries the SMT solver once
per input-output example in a profile and requires variable
mappings to be consistent between each example for a satisfying
fragment to be considered a match.

SearchRepair currently identifies patches using exclusively
the positive input-output examples because positive examples
are more restrictive than negative examples. Intuitively, while
relatively few code fragments satisfy the overall search query
above (conceptually encoding “output must be the median of
the three given inputs”), many more code fragments would
satisfy a negative constraint such as “output may be anything
except the observed incorrect output.” In the absence of positive
examples, the search is likely to return an intractable number
of results. Instead, SearchRepair excludes patches that produce
faulty behavior in the patch evaluation step, described next.

1Note that this is equivalent to a single disjunctive query that considers all
paths in the candidate fragment, but supports precise functionality slicing when
only one path in a candidate implements correct behavior, a full investigation
of which we leave to future work.

F. Evaluating patches
For each match fragment returned by the search, SearchRe-

pair constructs a patch that replaces the buggy fragment in
the program with the matching fragment (the candidate fix
code). The SMT solver produces a satisfying model (recall
Section III-E) detailing how the variables in the input-output
profile from the program state map to the variables in the patch.
Using this mapping, SearchRepair performs variable renaming
on the patch fragment to match the environment of in-scope
variables for the code to be replaced.

SearchRepair applies each such patch to the buggy input
program and reruns the full test suite, classifying the candidate
patch as a full repair, a partial repair, or a non-repair:
Full repair: The patched program passes all of test cases. For
example, the fragment in Figure 3(a) is a full repair for the
program in Figure 1, since all test cases in Figure 2 pass when
lines 5–10 are replaced with the repair.
Partial repair: The patched program passes all of the
previously passing test cases, and passes a portion of previously
failing test cases. For example, the fragment in Figure 3(b) is a
partial repair for program in Figure 1 because when lines 5–10
are replaced with the repair, while t1, t2, and t3 from Figure 2
continue to pass, and t5 now passes, t4 still fails.
Non-repair: The patched program fails all of the previously
failing test cases, or fails at least one of the previously passing
test cases.

The process of evaluating patches continues until either a
full repair is found or all candidate repairs are evaluated. If
a full repair is not found, SearchRepair can return a partial
repair, as Section IV-B reports.

IV. EVALUATION
This section describes SearchRepair’s evaluation, including

a comparison to three prior tools, GenProg [74], TrpAutoRe-
pair [56], and AE [73]. Section IV-A describes our experimental
set up. Sections IV-B and IV-C evaluate SearchRepair’s
effectiveness at producing repairs and the quality of those
repairs, respectively. Section IV-D presents preliminary results
into a fully automated approach for repairing defects without
requiring the developer to write tests. Finally, Section IV-E
discusses the threats to our experimental validity.

A. Experimental setup
We base our evaluation on the IntroClass benchmark.

IntroClass is intended specifically for evaluating automatic
program repair research [43]. IntroClass is available for
download: http://repairbenchmarks.cs.umass.edu/. In-
troClass consists of 998 defective versions of C programs
submitted by around 200 students for six small C programming
assignments in an introductory undergraduate course. All
defects are made by the students as part of normal development
practices while attempting to complete their assignments. These
998 versions are broken into two (overlapping) sets of defects,
778 that fail tests in instructor-written test suites, and 845 that
fail tests in automatically-generated test suites. Our evaluation
uses the set of 778 defects, described in Figure 6.

Each assignment asks students to write a C program
according to a detailed specification. The students may, at
any time and as often as they wish, commit a version of their
code to a git repository. This saves a potentially defective
version and runs, on a remote server, a set of instructor-written
test cases for the assignment. The testing harness then reports
to the student the number of test cases the program passed and

http://repairbenchmarks.cs.umass.edu/

program defects instructor KLEE
tests tests description

checksum 29 6 10 check sum of a string
digits 91 6 10 digits of a number
grade 226 9 9 grade from score
median 168 7 6 median of three numbers
smallest 155 8 8 smallest of four numbers
syllables 109 6 10 count vowels of a string

total 778 42 53

Fig. 6: The IntroClass dataset, including the number of buggy
versions of each assignment and the associated test suite sizes.

failed, without providing details about the inputs and expected
outputs of those programs. The students also may query an
oracle implementation for the correct output on inputs they
provide. The 778 defects are collected from these submitted
versions by selecting versions that pass at least one and fail at
least one instructor-written test.

The instructor-written test suite is constructed via careful
consideration of the requirements and the input space. Intro-
Class also includes, for each program, a test suite automatically
generated using KLEE [9] to achieve full branch coverage
on an instructor-written oracle program. These additional test
suites support independent high-coverage validation of program
and patch correctness.

Our evaluation attempts to repair the 778 buggy versions
identified by the instructor-written test suite, giving the repair
tools access to that test suite. Test suites are known to be
imperfect [60], and so a repair technique that uses them exclu-
sively to evaluate partial correctness risks breaking undertested
functionality if the resulting patches are insufficiently general.
We use the KLEE test suite to independently validate patch
correctness, evaluating the degree to which patches overfit to
the input test suites, possibly breaking undertested functionality.

Prior work has released baseline experimental results for
GenProg, AE, and TrpAutoRepair on IntroClass is to support
comparative evaluations for new techniques [43], [65]. We use
these experimental results in our comparative evaluation.

We indexed several repositories of code fragments for
SearchRepair. Our overall experimental goal is to evaluate
the feasibility of semantic-search-based program repair. For
most experiments, we index the repository for a given defective
student assignment out of the other students’ buggy assignment
submissions. We explicitly do not include correct submissions
that pass all instructor-written tests. We also investigate a repair
scenario with a database constructed of fragments from the
Linux kernel source code (see Section IV-D). Each database
has at minimum 2,000 fragments to consider for repair.

B. Repair effectiveness
Figure 7 shows how effective each of the four repair

techniques, SearchRepair, GenProg, TrpAutoRepair, and AE,
are at producing patches that pass all of the tests supplied to
the repair technique. (We defer the evaluation of the quality
of these patches until Section IV-C.) SearchRepair repairs 150
(19.3%) of the 778 defective student programs, compared to
GenProg’s 287 (36.9%), TrpAutoRepair’s 247 (31.7%), and
AE’s 159 (20.4%).

program SearchRepair AE GenProg TrpAutoRepair total

checksum 0 0 8 0 29
digits 0 17 30 19 91
grade 5 2 2 2 226
median 68 58 108 93 168
smallest 73 71 120 119 155
syllables 4 11 19 14 109

total repaired 150 159 287 247 778

Fig. 7: Number of defects repaired by each technique. The
total column specifies the total number of defects, and the total
row specifies the total number of repaired defects.

SearchRepair did as well, and as well as the other techniques
on median and smallest, outperformed the other techniques
on grade, and produced some but not many repairs on
syllables. There are two assignments for which SearchRepair
was unable to produce any repairs, checksum and digits.
The checksum assignment is challenging for all the techniques
except GenProg. GenProg has the ability to combine multiple
repairs over the course of an evolutionary search, and checksum

functionality may require multi-edit repairs beyond what can be
provided even at SearchRepair’s higher granularity. However,
Section IV-D describes how using a database of code fragments
from the Linux kernel, SearchRepair was able to repair 18 of
the checksum defects, 17 of which were not be repaired by
any of the other three repair tools. SearchRepair performed
poorly on the digits assignment because this assignment
requires modeling of I/O operation beyond the capability of our
constraint encoder. Extending the semantic search technique to
encode and model such operations will increase SearchRepair’s
ability to handle a wider array of program constructs and thus,
defects. We are encouraged by SearchRepair’s success given
the subset of C language constructs and operations it currently
supports.

SearchRepair is complementary to the other repair tech-
niques. It can repair 20 of the defects that the other three
techniques do not repair. Figure 8 shows a Venn diagram
describing the breakdown of which techniques repaired which
defects. There are 310 total unique defects the tools were able
to repair. Of these, 20 (6.5%) are unique to SearchRepair,
160 (51.6%) can be repaired by at least one other technique
but not by SearchRepair, and 130 (41.9%) can be repaired by
SearchRepair and at least one other technique.

These results suggest that SearchRepair may be complemen-
tary to these other previously-proposed generate-and-validate
techniques. The fact that SearchRepair repairs 20 defects that
the other tools do not suggests that, although SearchRepair
does not repair more defects than the previous tools, it repairs
at least some different defects.

SearchRepair can also automatically identify partial repairs
that address some but not all of the defective behavior (recall
Section III-F). In addition to the defects it repaired fully,
SearchRepair also identified partial repairs for four of the
grade programs.

C. Repair quality
Producing patches that address undesirable behavior is

important, but does not fully address the issue of repair quality.

GenProg
287 (92.6%)

TrpAutoRepair
247 (79.7%)

AE
159 (51.3%)

SearchRepair
150 (48.4%)

20 (6.5%)

32 (10.3%) 1 (0.3%)

2 (0.6%)

0 (0%)

90 (29.0%)

0 (0%)

68 (21.9%)

0 (0%)

52 (16.8%)

0 (0%)

10 (3.2%)

0 (0%)

total: 310 defects fixed

Fig. 8: SearchRepair is the only tool that can repair 20 (6.5%)
of the 310 defects repaired by the four repair techniques. The
other three repair tools can together repair 160 (51.6%) defects
that SearchRepair cannot. The remaining 130 (41.9%) of the
defects can be repaired by SearchRepair and at least one other
tool. (Not shown in the diagram is that 35 (11.3%) of the defects
can be repaired by both GenProg and TrpAutoRepair, and that
0 (0%) of the defects can be repaired by both SearchRepair
and AE.)

One of our main hypotheses in developing SearchRepair is that
program repair via search for human-written routines is likely
to produce higher-quality repairs than prior work has been able
to. We thus use the second, independent test suite that is not
used by the repair process to assess and compare repair quality
between techniques. If a repair passes more of the independent
tests, then it generalizes better to the full specification of the
program, and is thus of higher quality (recall Section II-C).

Figure 9 shows that the quality of the patches produced by
SearchRepair is much higher than that of the other techniques.
SearchRepair-produced patches pass 97.3% of the independent
tests, whereas GenProg-, TrpAutoRepair-, and AE-produced
patches pass only 68.7%, 72.1%, and 64.2% of those tests,
respectively. This supports our hypothesis that using human-
written code at a higher level of granularity than previously
explored produces higher-quality, better-generalizing patches
than do prior techniques.

D. Fully automated repair
Today, automated program repair requires the user to write

a specification, such as a test suite. Because real-life test-suites
are incomplete and imperfect [60], and poor-quality test suites
pose a challenge to program repair [65].

Automated test input generation can perhaps alleviate the
burden of writing extensive tests and may aid automated
program repair, although this requires solving the problem
of producing a test oracle, which we do not address here.
We designed and ran a preliminary experiment to test if
SearchRepair can be used in an automated manner to repair
defects. This experiment had SearchRepair (1) use the KLEE-
generated tests for the defects to simulate a scenario in which
the user had written no tests, and (2) created and used an
indexed database of a random subset of the Linux kernel code
to use as candidate repairs. In this scenario, SearchRepair
was able to repair 18 checksum defects, 17 of which, none
of the other three tools repaired. This result suggests that
SearchRepair is a powerful tool that can be used to search for

SearchRepair GenProg TrpAutoRepair AE
97.3% 68.7% 72.1% 64.2%

Fig. 9: The quality of the patches produced by the four repair
techniques, as measured by the number of independent (not
used for patch generation) tests the patched programs pass.

repairs in large, open-source repositories and be made even
more automated with the use of automated test generation.

E. Threats to validity
IntroClass is composed of short, simple programs and our

results may not generalize to more complex programs. We
mitigate this threat to validity by evaluating on a large number
of such programs, tested by systematically-designed test suites,
programmed by actual novice developers making real mistakes.
The experimental setting is appropriate for the constraints of
our semantic search engine research prototype for C. The
implementation of new constraint encodings for C language
constructs is labor-intensive, and we are confident that adding
new such constructs will improve SearchRepair’s expressive
power. For example, approximation and unrolling can both
extend support to more powerfully encoding loops.

For most of our experiments, the repository is constructed of
closely related programs, in the interest of supporting a scalable
evaluation. For each student-written defect, we excluded from
the repository that student’s assignment solution to avoid giving
the search unfairly correct code. Still, the artificial nature of the
repository construction is a threat to the generality of our results.
Our success on the one case study assignment using fragments
scraped from the Linux kernel supports our hypothesis that the
approach can generalize to broader datasets.

SearchRepair’s repairs may be hard to maintain. Our over-
fitting evaluation suggests that they more generally encode the
desired requirements than the patches produced by competing
techniques, but this measure is only a proxy for quality.

We assume the test cases are sound and complete. That
is, we assume the tests fail when there is a bug and pass
when there is not one. While, in general, this assumption is
flawed, for the scope of the evaluation, it is reasonable. We
mitigate the threat it poses by using two independent test suites
to evaluate SearchRepair output. Applying SearchRepair to a
broader context will likely require us to consider partial fixes
when complete fixes cannot be found. In that case, the partial
fix may be the product of the test suite, and not the code
repository being searched over.

V. RELATED WORK

Code redundancy. Prior work has found that much of software
is both syntactically and semantically redundant [5], [11], [12],
[24]. A study of 6,000 software projects (over 420 million
lines of code) found that large portions of most software
projects are syntactically redundant [24]. Semantically, many
methods can be reconstructed by composing other methods in
the same project [5], [11], [12]. These findings are consistent
with researchers’ observations of code clones [37]. Intuitively,
software projects repeatedly reuse the same common building
block data structures and methods as other projects, and
often reimplement this functionality. This suggests that if
a project contains a method with a bug, other software projects

likely implement a bug-free version of the same or similar
functionality that may be used to produce a repair.
Semantic Code Search. Recently keyword-based searches
have begun to incorporate semantic information for finding
working code examples from the Web [38] or reformulating
queries for concept localization [30]. The search approach
we use for program repair depends on a more structured
specification. Prior semantic code search has used formal
specifications [27], [53], [77] and test cases [55], [58]. Formal
specifications allow precise and sound matching but must be
written by hand, which is difficult and error-prone. Test cases
are more lightweight but, prior to our work, required the code
to be executed and could not identify partial matches.
Code Synthesis. Code can be synthesized using input-output
examples, written in a domain-specific language [29], using
predefined components [34], or based on a high-level behavioral
description [4]. Recent approaches use context from a debugger
to show where in a program synthesis should occur [26].
While effective in that domain, synthesis-based approaches
are limited by the solver’s ability to enumerate and test all
possible combinations of program constructs. In our use of
solvers for semantic search, we instead encode, search over,
and return existing code.
Code transfer. SearchFix uses textual replacement with
variable renaming to insert candidate patches into buggy
programs. This relatively simple procedure is sufficient for
the IntroClass dataset, but more complex programs will likely
require deeper code transfer techniques. Recent advances in
code transfer [6], [62], [63] are complementary to our work
and we expect future versions of SearchRepair to use them.
Program repair. Automated program repair is concerned with
automatically bringing an implementation more in line with
its specification, typically by producing a patch that addresses
a defect as exposed by a specification or a test case. Interest
in this field has expanded substantially over the past decade
to include at least twenty projects since 2009 that involve
some form of repair (e.g., AE [73], AFix [35], ARC [7],
Arcuri and Yao [3], ARMOR [11], and AutoFix-E [52],
[70], Axis [48], BugFix [33], CASC [76], ClearView [54],
Coker and Hafiz [15], Debroy and Wong [18], Demsky and
Rinard [19], DirectFix [49], FINCH [51], GenProg [42],
[74], Gopinath et al. [28], Jolt [10], Juzi [21], Kali [57],
PACHIKA [16], PAR [39], relifix [69], SemFix [50], Sidiroglou
and Keromytis [61], TrpAutoRepair [56], etc.). Section II-B
has discussed the differences between generate-and-validate and
correct-by-construction repair. The approach behind SearchRe-
pair bridges the gap between these two repair approaches, in a
similar vein as SemFix [50], which uses learned constraints to
guide component-based synthesis of repair code. SearchRepair
is more general in the types of defects it can repair than SemFix,
which specifically targets defective predicates and defective
assignments. SearchRepair can also use databases of human-
written code, broadening the granularity of the changes that
can be found and applied to beyond one line. This may impact
readability, maintainability, or generalizability of the resulting
code, as we observed in our overfitting metrics.

Another way to distinguish between prior work in automated
repair is by the generality of the proposed techniques. Some
approaches target a particular class of bugs, such as buffer over-
runs [64], unsafe integer use in C programs [15], single-variable
atomicity violations [35], deadlock and livelock defects [46],

concurrency errors [47], and data input errors [1]. Other
techniques tackle generic bugs. For example, the ARMOR tool
replaces buggy library calls with different calls that achieve the
same behavior [11], and relifix uses a set of templates mined
from regression fixes to automatically patch generic regression
bugs [69]. Our evaluation has focused on tools that fix generic
bugs, but our methodology can be applied to focused repair
as well. Regardless, such techniques require a mechanism
to specify desired behavior, whether those specifications are
implicit (integer vulnerability patterns), explicit in the form
of formal specifications or annotations (as in AutoFix-E [52],
[70]), test cases (as in GenProg [42], TrpAutoRepair [56],
and other test-case-based generate-and-validate approaches),
or hybrids (as in SemFix [50]). SearchRepair falls into the
latter category, learning specifications over test case behavior
and using that observed behavior to guide repair. We have
demonstrated that its particular approach is orthogonal to other
prior approaches in this space, and that it may provide unique
benefits in terms of the generality of its resulting repairs.

VI. CONTRIBUTIONS
The high source code redundancy in modern software

development practice means that it is very likely that a piece of
code with a defect has been reimplemented correctly elsewhere.
We proposed to take advantage of this observation by using
advances in semantic code search — searching for code based on
a behavioral specification as opposed to a keyword description —
to automatically repair defective programs. We implemented
our approach in SearchRepair, a technique that uses static
analysis to build a searchable database of open-source code
fragments that describes fragment behavior as a set of SMT
constraints, and dynamic analysis to identify candidate faulty
regions in a program and construct characteristic input-output
behavior profiles. SearchRepair uses an SMT constraint solver
to search over the database of code fragments for potential
repairs, maps candidate repair fragments to a buggy context,
and validates the candidate repair using test cases.

We hypothesized that using human-written code to construct
patches and performing repair at a higher granularity level than
prior work offers a unique advantage in creating repairs that
generalize beyond the partial correctness specification encoded
in a test suite. Our evaluation on 778 defects written by novice
developers confirms our hypothesis. SearchRepair-repaired
programs pass, on average, 97.3% of independent tests not used
to construct the repair, whereas GenProg-, TrpAutoRepair-, and
AE-repaired programs pass 68.7%, 72.1%, and 64.2% of the
tests, respectively. Our results suggest that SearchRepair is
complementary to prior approaches, repairing some defects
those approaches cannot, and producing higher-quality repairs.

Overall, SearchRepair’s results strongly suggest more
research is warranted in semantic-search-based repair and
that such approaches may produce patches that drastically
outperform its counterpart techniques in terms of generalizing
to program specifications.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation

under grants no. CCF-1446683, CCF-1446932, CCF-1446966,
and CCF-1453508.

REFERENCES
[1] Muath Alkhalaf, Abdulbaki Aydin, and Tevfik Bultan. Semantic

differential repair for input validation and sanitization. In International

Symposium on Software Testing and Analysis (ISSTA), pages 225–236,
San Jose, CA, USA, July 2014.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with an open
bug repository. In Workshop on Eclipse Technology eXchange, pages
35–39, San Diego, California, 2005.

[3] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to
automatic software bug fixing. In Congress on Evolutionary Computation,
pages 162–168, 2008.

[4] Marco Autili, Paola Inverardi, Alfredo Navarra, and Massimo Tivoli.
SYNTHESIS: A tool for automatically assembling correct and distributed
component-based systems. In ACM/IEEE International Conference on
Software Engineering (ICSE) Formal Demonstrations track, pages 784–
787, 2007.

[5] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and
Federica Sarro. The plastic surgery hypothesis. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE),
pages 306–317, Hong Kong, China, November 2014.

[6] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and
Justyna Petke. Automated software transplantation. In ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
pages 373–384, Baltimore, MD, USA, July 2015.

[7] Jeremy S. Bradbury and Kevin Jalbert. Automatic repair of concurrency
bugs. In Massimiliano Di Penta, Simon Poulding, Lionel Briand, and
John Clark, editors, International Symposium on Search Based Software
Engineering (SSBSE) fast abstract, Benevento, Italy, September 2010.

[8] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. Reversible debugging software. Technical report,
University of Cambridge, Judge Business School, 2013.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 209–224, San Diego, CA, USA, 2008.

[10] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard.
Detecting and escaping infinite loops with Jolt. In European Conference
on Object Oriented Programming (ECOOP), Lancaster, England, UK,
July 2011.

[11] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino,
and Mauro Pezzè. Automatic recovery from runtime failures. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 782–791, San Francisco, CA, USA, 2013.

[12] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè.
Automatic workarounds for web applications. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE),
pages 237–246, Santa Fe, New Mexico, USA, 2010.

[13] Lori A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering (TSE), SE-
2(3):215–222, September 1976.

[14] Lori A. Clarke and Debra J. Richardson. Applications of symbolic
evaluation. Journal of Systems and Software (JSS), 5(1):15–35, February
1985.

[15] Zack Coker and Munawar Hafiz. Program transformations to fix
C integers. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 792–801, San Francisco, CA, USA, 2013.

[16] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating fixes
from object behavior anomalies. In IEEE/ACM International Conference
on Automated Software Engineering (ASE) short paper track, pages
550–554, Auckland, New Zealand, November 2009.

[17] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. 2008.

[18] Vidroha Debroy and W. Eric Wong. Using mutation to automatically
suggest fixes for faulty programs. In International Conference on
Software Testing, Verification, and Validation, pages 65–74, Paris, France,
2010.

[19] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,
Jeff H. Perkins, and Martin Rinard. Inference and enforcement of data
structure consistency specifications. In International Symposium on
Software Testing and Analysis (ISSTA), pages 233–243, Portland, ME,
USA, July 2006.

[20] Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Som-
merard, and Jifeng Xuan. Automatic repair of real bugs: An experience
report on the Defects4J dataset. CoRR, abs/1505.07002, 2015.

[21] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: A tool for repairing
complex data structures. In ACM/IEEE International Conference on
Software Engineering (ICSE) Formal Demonstration track, pages 855–
858, Leipzig, Germany, 2008.

[22] Stephanie Forrest. Genetic algorithms: Principles of natural selection
applied to computation. Science, 261:872–878, August 1993.

[23] Zachary P. Fry, Bryan Landau, and Westley Weimer. A human study of
patch maintainability. In International Symposium on Software Testing
and Analysis (ISSTA), pages 177–187, Minneapolis, MN, USA, July
2012.

[24] Mark Gabel and Zhendong Su. A study of the uniqueness of source
code. In Proceedings of the SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 147–156, Santa Fe,
NM, USA, 2010.

[25] Mark Gabel and Zhendong Su. Testing mined specifications. In
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), Cary, NC, USA, 2012.

[26] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann,
and Koushik Sen. CodeHint: Dynamic and interactive synthesis of
code snippets. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 653–663, Hyderabad, India, 2014.

[27] Carlo Ghezzi and Andrea Mocci. Behavior model based component
search: An initial assessment. In Workshop on Search-driven Devel-
opment: Users, Infrastructure, Tools, and Evaluation (SUITE), pages
9–12, Cape Town, South Africa, 2010.

[28] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid.
Specification-based program repair using SAT. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 173–188, Saarbrücken, Germany, March 2011.

[29] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Syn-
thesizing geometry constructions. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 50–
61, San Jose, CA, USA, 2011.

[30] Sonia Haiduc, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,
Andrea De Lucia, and Andrian Marcus. Query quality prediction and
reformulation for source code search: The refoqus tool. In International
Conference on Software Engineering (ICSE) Formal Demonstrations
Track, pages 1307–1310, San Francisco, CA, USA, 2013.

[31] Mark Harman. The current state and future of search based software
engineering. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 342–357, 2007.

[32] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 34–43, 2007.

[33] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. BugFix:
A learning-based tool to assist developers in fixing bugs. In Interna-
tional Conference on Program Comprehension (ICPC), pages 70–79,
Vancouver, BC, Canada, May 2009.

[34] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 215–224, Cape Town,
South Africa, 2010.

[35] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit.
Automated atomicity-violation fixing. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
389–400, San Jose, CA, USA, 2011.

[36] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of
test information to assist fault localization. In International Conference
on Software Engineering (ICSE), pages 467–477, Orlando, FL, USA,
2002.

[37] Cory J. Kapser and Michael W. Godfrey. “cloning considered harmful”
considered harmful: Patterns of cloning in software. Empirical Software
Engineering, 13(6):645–692, December 2008.

[38] Iman Keivanloo, Juergen Rilling, and Ying Zou. Spotting working
code examples. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 664–675, Hyderabad, India, 2014.

[39] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim.
Automatic patch generation learned from human-written patches. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 802–811, San Francisco, CA, USA, 2013.

[40] James C. King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, July 1976.

[41] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[42] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In AMC/IEEE International Conference on
Software Engineering (ICSE), pages 3–13, Zurich, Switzerland, 2012.

[43] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun,
Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. The
ManyBugs and IntroClass benchmarks for automated repair of C
programs. IEEE Transactions on Software Engineering (TSE), 2015.

[44] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. GenProg: A generic method for automatic software repair.
IEEE Transactions on Software Engineering (TSE), 38:54–72, 2012.

[45] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug
isolation via remote program sampling. In SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 141–
154, San Diego, CA, USA, 2003.

[46] Yiyan Lin and Sandeep S. Kulkarni. Automatic repair for multi-threaded
programs with deadlock/livelock using maximum satisfiability. In
International Symposium on Software Testing and Analysis (ISSTA),
pages 237–247, San Jose, CA, USA, July 2014.

[47] Peng Liu, Omer Tripp, and Charles Zhang. Grail: Context-aware fixing
of concurrency bugs. In ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 318–329, Hong Kong,
China, November 2014.

[48] Peng Liu and Charles Zhang. Axis: Automatically fixing atomicity vio-
lations through solving control constraints. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 299–309, Zurich,
Switzerland, 2012.

[49] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. DirectFix:
Looking for simple program repairs. In International Conference on
Software Engineering (ICSE), Florence, Italy, May 2015.

[50] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. SemFix: Program repair via semantic analysis. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 772–781, San Francisco, CA, USA, 2013.

[51] Michael Orlov and Moshe Sipper. Flight of the FINCH through the
Java wilderness. IEEE Transactions on Evolutionary Computation,
15(2):166–182, April 2011.

[52] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. IEEE
Transactions on Software Engineering (TSE), 40(5):427–449, 2014.

[53] John Penix and Perry Alexander. Efficient specification-based component
retrieval. Automated Software Engineering, 6:139–170, April 1999.

[54] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. Automatically patching errors in
deployed software. In ACM Symposium on Operating Systems Principles
(SOSP), pages 87–102, Big Sky, MT, USA, October 12–14, 2009.

[55] Andy Podgurski and Lynn Pierce. Retrieving reusable software by
sampling behavior. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2:286–303, July 1993.

[56] Yuhua Qi, Xiaoguang Mao, and Yan Lei. Efficient automated program
repair through fault-recorded testing prioritization. In International Con-
ference on Software Maintenance (ICSM), pages 180–189, Eindhoven,
The Netherlands, September 2013.

[57] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis
of patch plausibility and correctness for generate-and-validate patch
generation systems. In International Symposium on Software Testing
and Analysis (ISSTA), pages 24–36, Baltimore, MD, USA, 2015.

[58] Steven P. Reiss. Semantics-based code search. In ACM/IEEE
International Conference on Software Engineering (ICSE), pages 243–
253, Vancouver, BC, Canada, 2009.

[59] Manos Renieris and Steven Reiss. Fault localization with nearest
neighbor queries. In IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 30–39, Montreal, Québec, Canada,
October 2003.

[60] Research Triangle Institute. The economic impacts of inadequate
infrastructure for software testing. NIST Planning Report 02-3, May
2002.

[61] Stelios Sidiroglou and Angelos D. Keromytis. Countering network
worms through automatic patch generation. IEEE Security and Privacy,
3(6):41–49, November 2005.

[62] Stelios Sidiroglou-Douskos, Eli Davis, and Martin Rinard. Horizontal
code transfer via program fracture and recombination. Technical
Report MIT-CSAIL-TR-2015-012, MIT Computer Science and Artificial
Intelligence Laboratory, 2015.

[63] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard.
Automatic error elimination by horizontal code transfer across multiple
applications. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 43–54, Portland, OR, USA,
2015.

[64] Alexey Smirnov and Tzi cker Chiueh. Dira: Automatic detection,
identification and repair of control-hijacking attacks. In Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA,
February 2005.

[65] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. Is the
cure worse than the disease? Overfitting in automated program repair.
In European Software Engineering Conference and ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC/FSE), Bergamo, Italy, September 2015.

[66] Kathryn T. Stolee. Solving the Search for Source Code. PhD thesis,
University of Nebraska, Lincoln, Lincoln, NE, USA, August 2013.

[67] Kathryn T. Stolee and Sebastian Elbaum. Toward semantic search via
SMT solver. In ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE) New Ideas and Emerging Results Track,
pages 25:1–25:4, Cary, NC, USA, 2012.

[68] Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. Solving the
search for source code. ACM Transactions on Software Engineering
Methodology, 23(3):26:1–26:45, May 2014.

[69] Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair
of software regressions. In International Conference on Software
Engineering (ICSE), Florence, Italy, 2015.

[70] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, and Andreas Zeller. Automated fixing of programs
with contracts. In International Symposium on Software Testing and
Analysis (ISSTA), pages 61–72, Trento, Italy, 2010.

[71] Westley Weimer. Patches as better bug reports. In International
Conference on Generative Programming and Component Engineering
(GPCE), pages 181–190, Portland, OR, USA, 2006.

[72] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu
Nguyen. Automatic program repair with evolutionary computation.
Communications of the ACM Research Highlight, 53(5):109–116, May
2010.

[73] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging
program equivalence for adaptive program repair: Models and first
results. In IEEE/ACM International Conference on Automated Software
Engineering (ASE), Palo Alto, CA, USA, 2013.

[74] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 364–374, Vancouver, BC, Canada, 2009.

[75] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas
Zeller. How long will it take to fix this bug? In International Workshop
on Mining Software Repositories, Minneapolis, MN, USA, 2007.

[76] Josh L. Wilkerson, Daniel R. Tauritz, and James M. Bridges. Multi-
objective coevolutionary automated software correction. In Conference
on Genetic and Evolutionary Computation (GECCO), pages 1229–1236,
Philadelphia, PA, USA, 2012.

[77] Amy Moormann Zaremski and Jeannette M. Wing. Specification
matching of software components. ACM Transactions on Software
Engineering and Methodology (TOSEM), 6:333–369, October 1997.

