
How Code Search Drives
Software Engineering

Dr. Kathryn (Katie) Stolee

Associate Professor

North Carolina State University

1

2

We studied Google Developers in 2013

•Code search is performed throughout the development lifecycle
• Search queries happens ~12x per day

In 2022, we also found (yet unpublished observations):
• Searching for examples was less successful than searches for other

purposes

3

FIND IT THINK IT TEST IT FIX IT

4

Finding Code Examples

•Empirical Investigations into Developer Behavior
• 85% of developers search for code at least weekly [TOSEM 2014]
• Average of 12 queries per day [FSE 2015]
• Code searches require more effort than information search [MSR 2018]

• Innovations:
• Behavior-based code search via static analysis [TOSEM 2014]
• Behavior-based code search via dynamic analysis [ICSE 2020] [FSE 2021]

CAREER: On the Foundations of Semantic Code Search. $500k [active] 5

A different kind of search

Example input

Example output

6

Specification

Result(s)

Matching

Documents

In
dexin

g

Code

7

Code Search via Symbolic
Execution
K. T. Stolee, S. Elbaum, M. B. Dwyer: Code search with input/output queries: Generalizing, ranking, and
assessment. JSS 2016.

K. T. Stolee, S. Elbaum, D. Dobos: Solving the Search for Source Code. TOSEM 2014.

8

Symbolic Execution

9

2

2

2

3

2

4

X
4

7

4

4
4

4

7

7
5

SMT Solvers

Facts Assertions
a >= 0 (assert (>= a 0))

b = 2 (assert (= b 2))

c = 2 (assert (= c 2))

c = a * b (assert (= (* a b) c))

Result: sat
10

Satisfiability Modulo Theory solvers determine if a logical
formula is satisfiable

SMT Solvers

Result: sat

Facts Assertions
a >= 0 (assert (>= a 0))

b = ? (assert (= b ?))

c = 2 (assert (= c 2))

c = a * b (assert (= (* a b) c))

Satisfiability Modulo Theory solvers determine if a logical
formula is satisfiable

11

Result: unsat

Facts Assertions
a = 0 (assert (= a 0))

b = ? (assert (= b ?))

c = 2 (assert (= c 2))

c = a * b (assert (= (* a b) c))

SMT Solvers

Satisfiability Modulo Theory solvers determine if a logical
formula is satisfiable

12

Input Output Result
3, 4, 3 4

3, 0, 0 3

SMT Matching

sa
tsa
t

Query

This is a result!
13

SMT Matching
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(declare-fun return () Int)
(assert (= return (+ (+ a b) c)))

Input Output Result
3, 4, 3 7

3, 4, 0 7

unsa
tsa
t

(assert (and (= a 3) (= b 4)
(= c 3)))

(assert (= return 7))

(assert (and (= a 3) (= b 4)
(= c 0)))

(assert (= return 7))

Query

Encoding

Potential Search Result

Not a Result!
14

Why not just execute the code?

15

SMT Matching
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(declare-fun return () Int)
(assert (= return (+ (+ a b) c)))

Input Output Result
3, 4, 3 7

3, 4, 0 7

sa
tsa
t

(assert (and (= a 3) (= b 4)
(= c 3)))

(assert (= return 7))

?

(assert (and (= a 3) (= b 4)
(= c 0)))

(assert (= return 7))

Query

Encoding

Potential Search Result

Not a Result!
16

Relax Encoding

unsa
t

This is a result (with modification)!

This gets
expensive!

17

Cross-Language Code Search
G. Mathew, K. T. Stolee: Cross-language code search using static and dynamic analyses. ESEC/SIGSOFT FSE
2021.

G. Mathew, C. Parnin, K. T. Stolee: SLACC: simion-based language agnostic code clones. ICSE 2020.

18

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

19

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

20

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

21

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

22

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

● [1,2,3], [45, 16]
● [], [3,2,1]
⋮
256 times
⋮

● [4, 5, 6, 7, 8, 99], []
● [3], [2]

● [1,2,3], [45, 16], 0, “Hello
World”
⋮
256 times
⋮

23

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

● func_b15f([1,2,3], [45, 16]) ⇒ 1452163
● func_b15f([], [3,2,1]) ⇒ 321
⋮
256 times
⋮

● func_b15f([4, 5, 6, 7, 8, 99], []) ⇒ 4567899
● func_b15f([3], [2]) ⇒ 32

● func_ea72([1,2,3], [45, 16], 0, “Hello World”) ⇒
Hello World123
⋮
256 times
⋮

24

Cross-Language Behavioral Clones

Segmentation
Function
Creation

Input
Generation

Execution Clustering

Source Code

25

What does this mean for search?

26

3

2

1
27

1

3

2

28

��🏽 ♀

What about code-to-code search?

29

Code-to-code Search

Source Code
Behavior Similar

Code

Tokens /
Context

Structure

Non-dominated
Sorting

Word
Embedding

+
Tree

Embedding

����🏽 ♀
Query ✅

30

Looking Ahead….

IdealDynam
ic Analysis

Generative AI Sym
bolic

Analysis

31

Looking Ahead…

32

FIND IT THINK IT TEST IT FIX IT

33

Understanding Code

•Empirical Investigations into Code Comprehension
• Regular expression representation significantly impacts understandability

[ASE 2017]
• Comparing similar code algorithms is difficult and error-prone for

developers [VL/HCC 2022]
• Code review of refactorings is very hard for students [under review]

SHF: SMALL: Automated Discovery of Cross-Language Program Behavior Inconsistency $250k (Lead PI, $500k total grant)
[active] 34

Understanding Code

•Empirical Investigations into Code Comprehension
• Regular expression representation significantly impacts understandability

[ASE 2017]
• Comparing similar code algorithms is difficult and error-prone for

developers [VL/HCC 2022]
• Code review of refactorings is very hard for students [under review]

SHF: SMALL: Automated Discovery of Cross-Language Program Behavior Inconsistency $250k (Lead PI, $500k total grant)
[active] 35

Comparative Comprehension

The cognitive activity of understanding how algorithms behave relative
to each other

36

36

Controlled Experiment

•4 independent dimensions of
variation
• Behavior (same or not)
• Language (same or not)
• Structures (similar AST or not)
• Meaningful names (original or

obfuscated)

37

Controlled Experiment

Interviews Survey

38

n=16
Undergraduate students

Graduate students

Professionals

n=95
Unknown

Graduate students

Professionals

Comparison Accuracy

39

Overall correct: 292 of 439 (66.5%)

Correctness (%) for…

Similarity Dissimilari
ty

Clone Truth 85.3 46.7
Language 70.9 62.7
Structure 75.0 59.9

Names
(Meaningful|Obf.) 66.8 66.2

Overall correctness: 292 of 439 — 66.5%

*

*

Comparison Strategies

40

Structural

Schematic

Textual

Comparison Strategies

41

Structural

Schematic

Textual

“I didn't even need to [understand the

logic] because they were so similar.” - P4

Comparison Strategies

42

Structural

Schematic

Textual

U4 on cross-language deduplicators

Comparison Strategies

43

Structural

Schematic

Textual

U4 on cross-language deduplicators

Comparison Strategies

44

Structural

Schematic

Textual

Comparison Strategies

45

Structural

Schematic

Textual

Comparison Strategies

46

Structural

Schematic

Textual

Looking Ahead…

47

Looking Ahead…

48

FIND IT THINK IT TEST IT FIX IT

49

Testing Code

•Empirical Investigations into Code Repositories
• Only 17% of regular expressions are tested at all [FSE 2018]
• Students believe code coverage is the most important outcome for test

suites [ITiCSE 2021]

• Innovations:
• A static checklist for testing is as effective as coverage tools for second-year

students [ITiCSE 2022]

SHF: Small: Supporting Regular Expression Testing, Search, Repair, Comprehension, and Maintenance $500k [completed]

IUSE: EHR: Improving Software Testing Education through Lightweight Explicit Testing Strategies and Feedback $150k
(lead PI, $300k total) [active]

50

Testing Code

•Empirical Investigations into Code Repositories
• Only 17% of regular expressions are tested at all [FSE 2018]
• Students believe code coverage is the most important outcome for test

suites [ITiCSE 2021]

• Innovations:
• A static checklist for testing is as effective as coverage tools for second-year

students [ITiCSE 2022]

SHF: Small: Supporting Regular Expression Testing, Search, Repair, Comprehension, and Maintenance $500k [completed]

IUSE: EHR: Improving Software Testing Education through Lightweight Explicit Testing Strategies and Feedback $150k
(lead PI, $300k total) [active]

51

52

Methodology

53

Perceptio
n

Post

2-hour lab session

15 students
11 undergrads + 4 grads

17 students
12 undergrads + 5 grads

Coverage Tool

Testing Checklist

32 students
23 undergrads + 9 grads

Te
st

Im
plementatio

n

Checklists vs. Coverage Tools

54

Completeness Effectiveness

Tool support does not need
to be sophisticated to be

effective!

Checklists vs. Coverage Tools

55

fewer assertions, but higher mutation coverage

Completeness Effectiveness

Looking Ahead…

•Are the tests
correct?

•Are the tests
complete?

•What happens if
the requirements
change?

56

FIND IT THINK IT TEST IT FIX IT

57

Automated Program Repair

• Innovations:
• Program Repair fueled by semantic search creates patches that are less

prone to over-fitting [ASE 2015]
• Semantic search is promising for producing high-quality real-world defect

repairs [TSE 2021]

SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code
Search $387k (co-PI, $1.2m total) [completed]

SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Code Search.
$87k (co-PI, $287; total) [completed]

58

Automated Program Repair

• Innovations:
• Program Repair fueled by semantic search creates patches that are less

prone to over-fitting [ASE 2015]
• Semantic search is promising for producing high-quality real-world defect

repairs [TSE 2021]

SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code
Search $387k (co-PI, $1.2m total) [completed]

SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Code Search.
$87k (co-PI, $287; total) [completed]

59

Automated Program Repair

P

fault
APR
Magic

Test Case 1

Test Case 2 X

Test Suite

✓

✓

Patch

✓

60

My Automated Program Repair

All Test cases P

Semantic
Search

Test Case 1

Test Case 2 X

Test Suite

✓

✓

Input 1
Input 2

Output 1
Output 2

Patch

✓

Produces patches of measurably higher quality than prior
approaches

61

Can it patch real bugs?

62

Python bug #69223

63

 }
+ if (timeout < 0) {
+ PyErr_SetString(PyExc_ValueError ,
+ "timeout must be non-negative");
+ return NULL;
+ }
 seconds = (long)timeout;

if (n < 0) {
 PyErr_SetString(PyExc_ValueError ,
 ”read length must be positive");
 return NULL;
}
seconds = (long)timeout;

Developer
Patch

SearchRepair
Patch

timeout < 0

Looking Ahead…

64X

FIND IT THINK IT TEST IT FIX IT

65

Big Results

•Code search via analysis leads to high precision and has promise for a
variety of applications

•Program Repair via code search leads to patches that are higher
quality

•Comparative comprehension is challenging when behaviors are close
but not exact

•Testing via checklist is as effective as coverage tools for early students

66

Teamwork makes it happen.

…. And
more!

67

Thanks!
ktstolee@ncsu.edu

68

Thanks!
ktstolee@ncsu.edu

69

