How Code Search Drives Software Engineering

Dr. Kathryn (Katie) Stolee

Associate Professor

North Carolina State University

NC STATE UNIVERSITY

Import csv python Search			Google			0	I'd like Python cod		
Repositories 463	6,279,643 code results	Sort: Best match -	Q [Ļ				
Code 6M									
Commits 7K	ompanje/companje.nl pages/python.md		Go	ogle Search I'm Feeling Lucky		Ś	Certa	inly! You can	
Issues 48K	114 ## replace broken words based on lookup	table					lict H	ere's the Pyt	
Discussions 394	<pre>115 ```python 116 #!/usr/bin/env python3</pre>						list. H	erestrieryt	
	117 118 import re,csv								
Packages 3	119 from collections import defaultdict		chromi	Im					
Marketplace 0	120 import os.path			ser to help move the web forward.		c	earch projects		
/ · · · · · · · · · · · · · · · · · · ·			An open-source brow	-	· · · · · ·		curen projecto		
8 * colla	, borators: ["John Doe", "Karen Smith"]	Projec	t Home Downloads	Wiki Issues Code Search					
9 * },									
	"Skittles the Cat", borators: []		Search code						
12 * }	Doracors. []		regular expres			Search Code			
13 *]			Search via regu	ar expression, e.g. ^java/.*\.java\$					
14 */			Search Options	3	In	Search Box			
	<pre>laborators_map(json: any): Map<string, pre="" set<st<=""></string,></pre>	cring>> {	Language	Any language	¢ la	ng:c++			
	<pre>= new Map<string, set<string="">>();</string,></pre>		File Path		file	e:(code [^or]g)search			
	item of json) {		Class		cla	ass:HashMap			
	me = item.name; llaborators = item.collaborators;		Function	L		nction:toString			
	<pre>t = new Set<string>(collaborators);</string></pre>								
	name, set);		Symbol		sy	mbol:std::vector			
22 }			Case Sensitive	No	¢ ca	se:yes			
23 return map	i		Exact	No	\$ ex	act:yes			
24 }									
😁 Copilot									

We studied Google Developers in 2013

Code search is performed throughout the development lifecycle
Search queries happens ~12x per day

In 2022, we also found (yet unpublished observations):

 Searching for examples was less successful than searches for other purposes

Finding Code Examples

• Empirical Investigations into Developer Behavior

- 85% of developers search for code at least weekly [TOSEM 2014]
- Average of 12 queries per day [FSE 2015]
- Code searches require more effort than information search [MSR 2018]
- Innovations:
 - Behavior-based code search via static analysis [TOSEM 2014]
 - Behavior-based code search via dynamic analysis [ICSE 2020] [FSE 2021]

A different kind of search

Code Search via Symbolic Execution

K. T. Stolee, S. Elbaum, M. B. Dwyer: Code search with input/output queries: Generalizing, ranking, and assessment. JSS 2016.

K. T. Stolee, S. Elbaum, D. Dobos: Solving the Search for Source Code. TOSEM 2014.

Q

Symbolic Execution

SMT Solvers

Satisfiability **M**odulo **T**heory solvers determine if a logical formula is satisfiable

- FactsAssertions
- a >= 0 (assert (>= a 0))
- b = 2 (assert (= b 2))
- c = 2 (assert (= c 2))

c = a * b (assert (= (* a b) c))

Result: sat $a\mapsto 1$

SMT Solvers

Satisfiability **M**odulo **T**heory solvers determine if a logical formula is satisfiable

Facts	Assertions
a >= 0	(assert (>= a 0))
b = ?	(assert (= b ?))
c = 2	(assert (= c 2))
c = a * b	(assert (= (* a b) c))

Result: sat $a\mapsto 2\wedge b\mapsto 2$

SMT Solvers

Satisfiability **M**odulo **T**heory solvers determine if a logical formula is satisfiable

Facts	Assertions					
a = 0	(assert (= a 0))					
b = ?	(assert (= b ?))					
c = 2	(assert (= c 2))					
c = a * b	(assert (= (* a b) c))					

Q

SMT Matching

1 private int getMax(int d, int e, int f){
2 if(d > e && d > f) {
3 return d;
4 }else if (e > d && e > f) {
5 return e;
6 }else {
7 return f;
8 }

$$\begin{split} P_{enc} &= ((d > e \land d > f \land return = d) \\ &\lor (d > e \land d \leq f \land e \leq d \land return = f) \\ &\lor (d \leq e \land e > d \land e > f \land return = e) \\ &\lor (d \leq e \land e > d \land e \leq f \land return = f) \\ &\lor (d \leq e \land e \leq d \land return = f)) \end{split}$$

Why not just execute the code?

Cross-Language Code Search

G. Mathew, K. T. Stolee: Cross-language code search using static and dynamic analyses. ESEC/SIGSOFT FSE 2021.

G. Mathew, C. Parnin, K. T. Stolee: SLACC: simion-based language agnostic code clones. ICSE 2020.

What does this mean for search?

What about code-to-code search?

Q

Code-to-code Search

Looking Ahead...

Understanding Code

0

- Empirical Investigations into Code Comprehension
 - Regular expression representation significantly impacts understandability [ASE 2017]
 - Comparing similar code algorithms is difficult and error-prone for developers [VL/HCC 2022]
 - Code review of refactorings is *very hard* for students [under review]

Understanding Code

- Empirical Investigations into Code Comprehension
 - Regular expression representation significantly impacts understandability [ASE 2017]
 - Comparing similar code algorithms is difficult and error-prone for developers [VL/HCC 2022]
 - Code review of refactorings is *very hard* for students [under review]

SHF: SMALL: Automated Discovery of Cross-Language Program Behavior Inconsistency \$250k (Lead PI, \$500k total grant) [active]

Comparative Comprehension

The cognitive activity of understanding how algorithms behave relative to each other

def sumup(numbers): accumulator = 0for value in numbers: accumulator += value return accumulator

s += i

i += 1

36
Controlled Experiment

1	<pre>public static boolean isAnagram(String str1,</pre>	1 v def isAnagram(s, t):
2	String str2) {	2 hash1 = [0]*256
З	<pre>if (str1.length() != str2.length())</pre>	∃ hash2 = [0]*256
4	return false;	
5		5 < for char in s:
6	<pre>int[] count1 = new int[256];</pre>	6 hash1[ord(char)] +=
7	<pre>int[] count2 = new int[256];</pre>	7 ∀ for char in t:
8		<pre>8 hash2[ord(char)] +=</pre>
9	<pre>for (int i = 0; i < str1.length(); i++) {</pre>	
10	++count1[str1.charAt(i)];	10 return hash1 == hash2
11	++count2[str2.charAt(i)];	
12	}	
13		
14	for (int i = 0; i < 256; i++)	
15	if (count1[i] != count2[i])	
16	return false;	
17		
18	return true;	
19	}	

- 4 independent dimensions of variation
 - Behavior (same or not)
 - Language (same or not)
 - Structures (similar AST or not)
 - Meaningful names (original or obfuscated)

Controlled Experiment

Interviews

Undergraduate students

Graduate students

Professionals

Survey

Unknown

Graduate students

Professionals

Comparison Accuracy

¢°

Overall correctness: 292 of 439 – 66.5%

Correctness (%) for...

	Similarity	Dissimilari	
		ty	***
Clone Truth	85.3	46.7	*
Language	70.9	62.7	*
Structure	75.0	59.9	
Names	66.8	66.2	
(Meaningful Obf.)	~~~~		

1	<pre>def camel_case(string):</pre>	1	<pre>def camel_case(string):</pre>
	a = list(string)		a = list(string)
	<pre>for i in range(0, len(a)):</pre>		<pre>for i in range(len(a)):</pre>
	if i==0 or a[i-1]=='_':		if i==0 or a[i-1]=='_':
	<pre>a[i] = a[i].upper()</pre>		<pre>a[i] = a[i].upper()</pre>
	<pre>return ''.join(a).replace('_','')</pre>		return ''.join([c for c in a if c != "_"])

"I didn't even need to [understand the logic] because they were so similar." - P4

U4 on cross-language deduplicators

U4 on cross-language deduplicators

1	<pre>def to_camel_case(text):</pre>	· 1	def UnderscoreToCam
	cap = True		segments = under_
	newText = ''		return segments[0
	for t in text:		for s in segmen
	if t == '_':		
	cap = True		
	continue		
	else:		
	if cap == True:		
	<pre>t = t.upper()</pre>		
	newText = newText + t		
	cap = False		
	return newText		

lef UnderscoreToCamelCase(under_score):
 segments = under_score.split('_')
 return segments[0] + ''.join([s[0].upper() + s[1:] \
 for s in segments[1:] if len(s) > 0])

1	<pre>def to_camel_case(text):</pre>	
	cap = True	
з	newText = ''	
4	for t in text:	
S	if t == '_':	
6	cap = True	
	continue	
8	else:	
	if cap == True:	
	<pre>t = t.upper()</pre>	
11	newText = newText + t	
12	cap = False	
13	return newText	

Looking Ahead...

Conversation 0

Commits 1

Checks 0

Files changed 1

...

Viewed ····

jamiddl2 commented on Nov 29, 2021 • edited by ktstolee •	Member
Adjusting some for-loops within getEntryByDateRange.	
Instructions:	

(fill out the Google form)

V 🕂 8 💶 🗉

iTrust2/src/main/java/edu/ncsu/csc/iTrust2/controllers/api/APILogEntryController.

java 💭

	@@ -110,8 +110,7 @@ public class APILogEntryController extends APICc
110 110	<pre>if (user == null user.getRoles() == null user.getRo</pre>
111 111	<pre>visible = new ArrayList<logentry>();</logentry></pre>
112 112	
113	<pre>- for (int i = 0; i < entries.size(); i++) {</pre>
114	<pre>- final LogEntry le = entries.get(i);</pre>
113	+ for (final LogEntry le : entries) {

0

Looking Ahead...

Testing Code

• Empirical Investigations into Code Repositories

- Only 17% of regular expressions are tested at all [FSE 2018]
- Students believe code coverage is the most important outcome for test suites [ITiCSE 2021]
- Innovations:
 - A static checklist for testing is as effective as coverage tools for second-year students [ITiCSE 2022]

SHF: Small: Supporting Regular Expression Testing, Search, Repair, Comprehension, and Maintenance \$500k [completed]

IUSE: EHR: Improving Software Testing Education through Lightweight Explicit Testing Strategies and Feedback \$150k (lead PI, \$300k total) [active]

Testing Code

- Empirical Investigations into Code Repositories
 - Only 17% of regular expressions are tested at all [FSE 2018]
 - Students believe code coverage is the most important outcome for test suites [ITiCSE 2021]
- Innovations:
 - A static checklist for testing is as effective as coverage tools for second-year students [ITiCSE 2022]

SHF: Small: Supporting Regular Expression Testing, Search, Repair, Comprehension, and Maintenance \$500k [completed]

IUSE: EHR: Improving Software Testing Education through Lightweight Explicit Testing Strategies and Feedback \$150k (lead PI, \$300k total) [active]

Test Case Checklist

Each test case should:

- be executable (i.e., it has an @Test annotation and can be run via "Run as JUnit Test")
- have at least one assert statement or assert an exception is thrown. Example assert statements include: assertTrue, asse assertEquals (click for tutorials). For asserting an exception is thrown, there are different approaches: try{...; fail();} catc e){assertThat...;}, @Test(expected = exception.class) in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).
- evaluate/test only one method

Each test case could:

- be descriptively named and commented
- □ If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)
- If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test evaluate behavior.

Test Suite Checklist

The test suite should:

- have at least one test for each requirement
- appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)
- contain a fault-revealing test for each bug in the code (i.e., a test that fails)
- □ For each requirement, contain test cases for:
 - Valid inputs
 - Boundary cases
 - Invalid inputs
 - Expected exceptions

To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered code and w appropriate.

Methodology

Checklists vs. Coverage Tools

Tool support does not need to be sophisticated to be effective!

Checklists vs. Coverage Tools

fewer assertions, but higher mutation coverage

Looking Ahead...

6

generate tests for a bowling scorekeeper

- Test: Calculate total score
 - Input: Player A rolls [5, 3, 8, 2, 10, 4, 6, 10, 9, 0, 5, 5, 10, 8, 1]
 - Expected Output: Total score = 142
- 2. Test: Calculate total score with spare bonus
 - Input: Player A rolls [5, 3, 8, 2, 10, 4, 6, 10, 9, 1, 5, 5, 10, 8, 1]
 - Expected Output: Total score = 152
- 3. Test: Calculate total score with strike bonus
 - Input: Player A rolls [5, 3, 8, 2, 10, 4, 6, 10, 10, 10, 5, 5, 10, 8, 1]
 - Expected Output: Total score = 201
- 4. Test: Calculate total score with consecutive strikes (turkey)
 - Input: Player A rolls [10, 10, 10, 5, 3, 8, 2, 10, 4, 6, 10, 9, 1, 5, 5, 10]

- Are the tests correct?
- Are the tests complete?
- What happens if the requirements change?

Automated Program Repair

• Innovations:

- Program Repair fueled by semantic search creates patches that are less prone to over-fitting [ASE 2015]
- Semantic search is promising for producing high-quality real-world defect repairs [TSE 2021]

SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code Search \$387k (co-PI, \$1.2m total) [completed]

NSF

SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Code Search. \$87k (co-PI, \$287; total) [completed]

Automated Program Repair

- Innovations:
 - Program Repair fueled by semantic search creates patches that are less prone to over-fitting [ASE 2015]
 - Semantic search is promising for producing high-quality real-world defect repairs [TSE 2021]

SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code Search \$387k (co-PI, \$1.2m total) [completed]

SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Code Search. \$87k (co-PI, \$287; total) [completed]

Automated Program Repair

Test Suite

Test Case 1 🗸

Test Case 2 💥

My Automated Program Repair

Test Suite

Test Case 1 🗸

Test Case 2 💥

Produces patches of *measurably* higher quality than prior approaches

Can it patch real bugs?

Python bug #69223

Looking Ahead...

please fix this code:

6

if (timeout < 0) {
 PyErr_SetString(PyExc_ValueError,
 "timeout must be non-negative"); + return NULL;
}</pre>

seconds = (long)timeout;

Here's the corrected code:

The code you provided seems to be a snippet from a C extension module for Python. It Checks if a variable `timeout` is less than zero and raises a `ValueError` with the message "timeout must be non-negative" if that condition is true.

The issue with the code is that there is an extra character, namely `+`, on the line before `**return NULL;**`. It seems to be a formatting mistake. To fix the code, remove that extra character, and the code will work as intended.

After making this correction, the code should compile and execute without any issues.

Big Results

- Code search via analysis leads to high precision and has promise for a variety of applications
- Program Repair via code search leads to patches that are higher quality
- Comparative comprehension is challenging when behaviors are close but not exact
- Testing via checklist is as effective as coverage tools for early students

Teamwork makes it happen.

morel

Thanks!

ktstolee@ncsu.edu

Thanks!

ktstolee@ncsu.edu

